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Irradiation of Cp�(CO)3WMe and HSiMe2Ar (Cp� ¼
�5-C5Me5,Ar ¼ Ph, pTol) in the presence of 4-(dimethylamino)-
pyridine (DMAP) led to the formation of base-stabilized silylene
complex Cp�(CO)2W(Ar)(=SiMe2.DMAP) (1). On gentle
heating, 1 was converted to the corresponding silyl complex
Cp�(CO)2(DMAP)WSiMe2Ar (2) through the 1,2-migration of
the aryl ligand to the silylene silicon. Irradiation of 2 reproduced
the silylene complex 1.

Coordinatively unsaturated transition-metal silyl complexes
have been proposed as key intermediates in various metal-cata-
lyzed transformations of organosilicon compounds. To gain in-
sight into these complexes, we designed a Si,N-chelate ligand,
(2-N,N-dimethylanilinyl)dimethylsilyl, which is expected to be
hemilabile and readily opens a vacant site through decoordina-
tion of the dimethylamino side arm. Recently, we reported
the photoreaction of Cp�(CO)3WMe with N,N-dimethyl-2-
(dimethylsilyl)aniline. This reaction proceeded through the
transient formation of the Si,N-chelate complex, which was fur-
ther converted to the base-stabilized silylene complex at room
temperature through 1,2-migration of the aryl group (Scheme
1).1 We now report that, in the non-chelate-type silyl complexes,
this unusual 1,2-migration reaction proceeds reversibly.

Photolysis2 of Cp�(CO)3WMe, HSiMe2Ar (Ar ¼ Ph, pTol),
and 4-(dimethylamino)pyridine (DMAP) in toluene gave the
external base-stabilized silylene complexes 1a and 1b in 42%
and 62% yields, respectively (Eq 1).3

Recrystallization of 1a from toluene at �16 �C yielded
yellow crystals that were suitable for X-ray crystal structure
analysis.4 A molecular structure of 1a is shown in Figure 1.
Complex 1a adopts a four-legged piano-stool geometry: the
tungsten center possesses one Cp�, two carbonyl, one phenyl,
and one silylene ligands, in which the phenyl and silylene li-
gands are located at the trans-positions. The DMAP molecule
is coordinated to the silylene ligand with the lone pair of the ni-
trogen atom. The dative bond character is reflected in the signif-
icantly long distance of the Si–N1 bond (1.924(17) �A) compared

to those of the normal Si–N covalent bonds (1.70–1.76 �A). The
W–Si bond distance (2.511(5) �A) is slightly shorter than those
of the silyltungsten complexes (2.53–2.63 �A)5 and comparable
to those of the base-stabilized silylenetungsten complexes
(2.45–2.51 �A).1,6 The sum of the bond angles around Si, exclud-
ing the nitrogen atom, is 343.3�, which is intermediate between
the tetrahedral (329�) and trigonal (360�) values and is character-
istic of those in the base-stabilized silylene complexes.7
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The 29SiNMR signals of 1a (86.7 ppm) and 1b (86.5 ppm)
are significantly downfield-shifted compared with those of usual
silyltungsten complexes (0–70 ppm)7 and comparable to those of
base-stabilized silylenetungsten complexes.7

1,2-Migration of an aryl group similar to the reaction in Eq 1
has been previously reported by Burger and Bergman for the
cationic iridium complexes [Cp�(PMe3)IrSiPhR2](OTf) (R ¼
Me or Ph) to give Cp�(PMe3)IrPh(SiR2OTf).

8

Importantly, in our system, the 1,2-migration of the aryl
group is reversible between the silyl and silylene complexes:
Heating 1 at 55 �C for 11 h led to the complete disappearance
of 1 to form the silyl complex 2 (Eq 2).9 Apparently, silyltungs-
ten complexes 2 are thermodynamically more stable than the
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Scheme 1.

Figure 1. ORTEP drawing of 1a. Selected bond distances
( �A) and angles (�): W{Si ¼ 2:511ð5Þ, W{C12 ¼ 2:227ð18Þ,
Si{N1 ¼ 1:924ð17Þ, C3{Si{C4 ¼ 102:5ð10Þ, W{Si{C3 ¼
120:4ð6Þ, W{Si{C4 ¼ 120:4ð8Þ.
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silylenetungsten complexes 1. The activation parameters for the
conversion of 1a to 2a are �Hz ¼ 155ð3Þ kJmol�1, �Sz ¼
152ð9Þ J K�1 mol�1, and �Gz

298 ¼ 110ð6Þ kJmol�1.10 The very
large positive value for entropy of activation implies that this
reaction proceeds through a dissociative mechanism.
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A possible mechanism for the thermal isomerization in Eq 2
would start with dissociation of DMAP in 1. The resulting
base-free silylene complex undergoes 1,2-migration of the aryl
group, and final coordination of DMAP to the tungsten center
gives 2. Although the 1,2-migration of an alkyl or aryl ligand
to the silylene silicon atom has been proposed in some iridi-
um11,12 and platinum13 systems, the reaction in Eq 2 represents
the first example of the reaction in which the isolated silylene
complex is converted to the silyl complex through 1,2-migration
of an organic group.

Recrystallization of 2b from toluene at room temperature
yielded yellow crystals suitable for X-ray crystal structure anal-
ysis.4 A molecular structure of 2b is shown in Figure 2. Complex
2b adopts a four-legged piano-stool geometry: the tungsten
center possesses one Cp�, two carbonyl, one DMAP, and one
silyl ligands. The p-tolyl group is located on the silyl silicon
atom. The W–Si bond distance (2.617(3) �A) is longer than that
in 1a and lies in the normal range expected for tungsten-silicon
single bond (2.53–2.63 �A).5

Irradiation2 of the silyl complexes 2 reproduced the silylene
complexes 1 in 62% (1a) and 64% (1b) NMR yields (Eq 3). The
isomerization proceeded to completion within 3min. A plausible
mechanism for this photochemical isomerization involves
photoinduced dissociation of the DMAP ligand in 2, followed
by the 1,2-migration of the aryl group and recoordination of
DMAP to the silylene silicon atom. However, an alternative
mechanism starting from photoinduced dissociation of a CO
ligand can not be ruled out.
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In conclusion, for the first time, the reversible isomerization
between the aryl(silylene) complex and arylsilyl complex via
1,2-aryl migration has been directly observed. In the photosta-
tionary state, silylene complexes 1 are predominant, whereas
silyl complexes 2 are thermodynamically more stable than 1.
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Figure 2. ORTEP drawing of 2b. Selected bond distances ( �A)
and angles (�): W{Si ¼ 2:617ð3Þ, W{N1 ¼ 2:244ð8Þ, C3{Si{
C4 ¼ 102:9ð6Þ, C3{Si{C5 ¼ 102:9ð5Þ, C4{Si{C5 ¼ 103:8ð5Þ,
W{Si{C3 ¼ 116:3ð4Þ, W{Si{C4 ¼ 111:6ð3Þ, W{Si{C5 =
117:6ð3Þ.
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